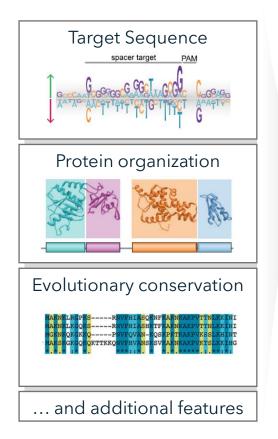
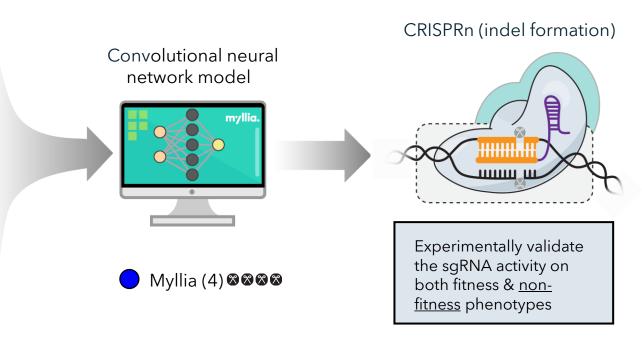
Design of sgRNA libraries for CRISPRn screens

Henrik Schmidt, PhD | BD Manager Lukas Badertscher, PhD | VP R&D


2024



The sgRNA design algorithm for CRISPRn screens

Training dataset of ~46,000 sgRNAs from published and in-house data sources

Commonly used genome-scale sgRNA libraries for CRISPRn screens

GeCKO v2 888888

Correspondence | Published: 30 July 2014

Improved vectors and genome-wide libraries for **CRISPR screening**

Neville E Sanjana, Ophir Shalem & Feng Zhang ☑

TKO v3 8888

Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens

Traver Hart,*.1 Amy Hin Yan Tong,† Katie Chan,† Jolanda Van Leeuwen,† Ashwin Seetharaman,† Michael Aregger, * Megha Chandrashekhar, * Nicole Hustedt, * Sahil Seth, * Avery Noonan, * Andrea Habsid,† Olga Sizova,† Lyudmila Nedyalkova,† Ryan Climie,† Leanne Tworzyanski,† Keith Lawson,† Maria Augusta Sartori,† Sabriyeh Alibeh,† David Tieu,† ** Sanna Masud,† ** Patricia Mero, Alexander Weiss, Kevin R. Brown, Matei Usai, Maximilian Billmann, Mahfuzur Rahman, ** Michael Costanzo, * Chad L. Myers, ** Brenda J. Andrews, ***.** Charles Boone, **,**** Daniel Durocher, **,** and Jason Moffat**,**,**,1

Brunello 8888

Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities

Kendall R. Sanson¹, Ruth E. Hanna¹, Mudra Hegde ¹, Katherine F. Donovan¹, Christine Strand ¹ Meagan E. Sullender 1, Emma W. Vaimberg Amy Goodale, David E. Root, Federica Piccioni 1 & John G. Doench 10 1

Behan XXXXX

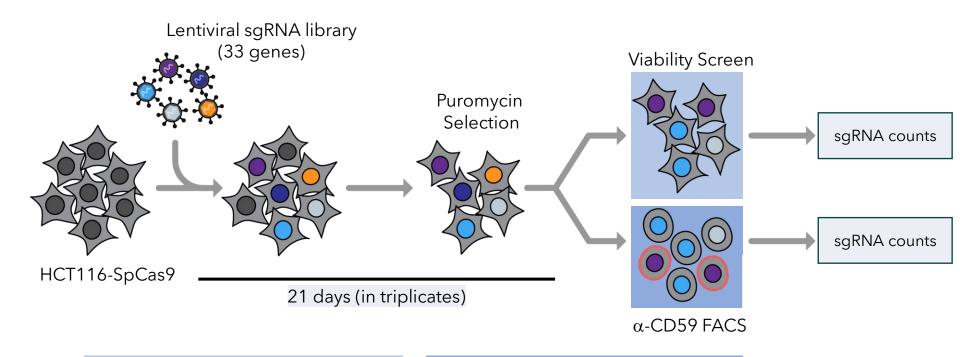
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens

Fiona M. Behan^{1,2,12}, Francesco Iorio^{1,2,3,12}, Gabriele Picco^{1,12}, Emanuel Gonçalves¹, Charlotte M. Beaver¹, Giorgia Migliardi^{4,5}, Rita Santos⁶, Yanhua Rao⁷, Francesco Sassi⁴, Marika Pinnelli^{4,5}, Rizwan Ansari¹, Sarah Harper¹, David Adam Jackson¹, Rebecca McRae¹, Rachel Pooley¹, Piers Wilkinson¹, Dieudonne van der Meer¹, David Dow^{2,6}, Carolyn Buser-Doepner^{2,7}, Andrea Bertotti^{4,5}, Livio Trusolino^{4,5}, Euan A. Stronach^{2,6}, Julio Saez-Rodriguez^{2,3,8,9,10}, Kosuke Yusa^{1,2,11,13} & Mathew J. Garnett^{1,2,13}*

VBC 8888

Multilayered VBC score predicts sgRNAs that efficiently generate loss-of-function alleles

Georg Michlits^{1,4}, Julian Jude ^{3,2,4}, Matthias Hinterndorfer², Melanie de Almeida ^{2,4} Gintautas Vainorius¹, Maria Hubmann¹, Tobias Neumann⁰², Alexander Schleiffer⁰^{1,2}, Thomas Rainer Burkard 1,2, Michaela Fellner, Max Gijsbertsen, Anna Traunbauer 2, Johannes Zuber^{®2,3™} and Ulrich Elling^{®1™}

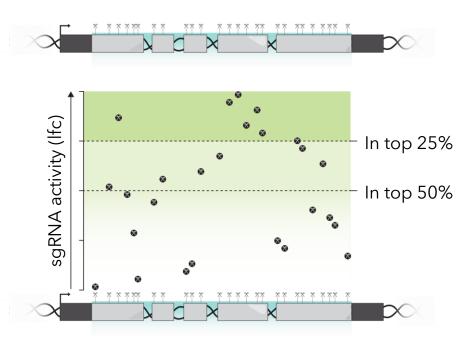

MinLibCas9

Minimal genome-wide human CRISPR-Cas9 library

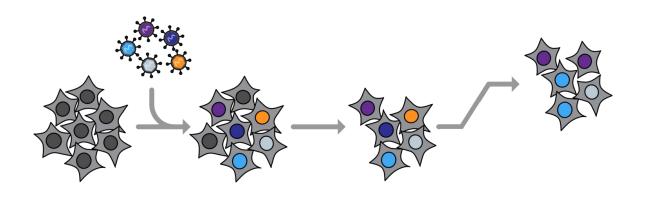
Emanuel Gonçalves¹, Mark Thomas¹, Fiona M. Behan¹, Gabriele Picco¹, Clare Pacini^{1,2}, Felicity Allen¹, Alessandro Vinceti³, Mamta Sharma¹, David A. Jackson¹, Stacey Price¹, Charlotte M. Beaver¹, Oliver Dovey David Parry-Smith¹, Francesco Iorio^{1,3}, Leopold Parts^{1,4}, Kosuke Yusa⁵ and Mathew J. Garnett^{1*}

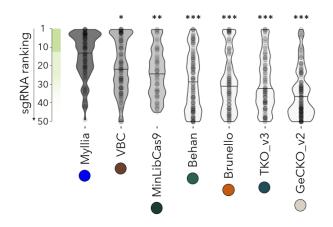
CRISPR screens to target essential and non-essential genes

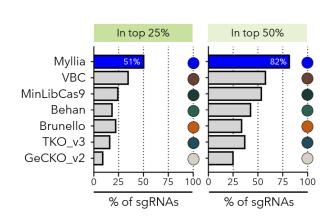
Dropout screen based on essentiality

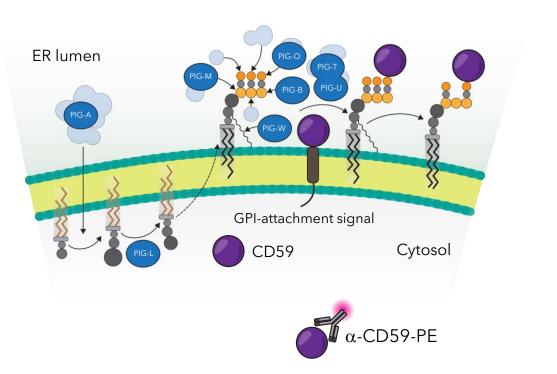

• 24 genes, ~50 sgRNAs/gene

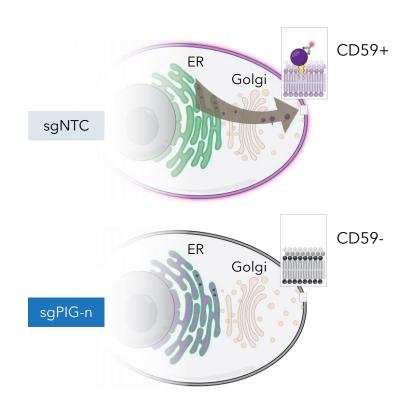
CD59 FACS readout

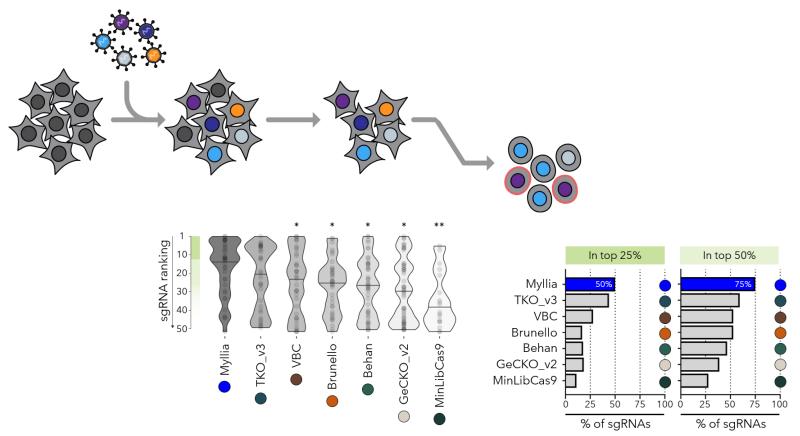

• 9 genes, ~50 sgRNAs/gene




~ 50 sgRNAs against each gene to cover the CDS




^{* =} significant difference to Myllia, U-test on normalized LFC *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001


Biosynthesis of GPI in the endoplasmic reticulum

Maturation of GPI-anchored proteins

^{* =} significant difference to Myllia, U-test on normalized LFC *p \leq 0.05, **p \leq 0.01,

Conclusions

- Myllia's sgRNA design algorithm selects highly active sgRNA sequences for targeting both essential and non-essential genes and appears to be "superior" to other publicly available libraries
- Comparable observations have been made in: A benchmark comparison of CRISPRn guide RNA design algorithms and generation of small single and dual-targeting libraries to boost screening efficiency (Lukasiak et al., 2024 bioRxiv)

- We will expand the screening campaign to target additional non-essential genes that may help further improve sgRNA design and increase editing rates
- CRISPRi libraries will be evaluated using a similar workflow

Acknowledgements

Evaluation of sgRNAs Anatoly Vasilyev Nicole Untermoser Sumit Pawar Adam Krejci Lukas Badertscher

Myllia Biotechnology strives to perform next-generation CRISPR screening workflows utilizing cancer cell lines and primary human T cells.

Contact us to discuss your CRISPR projects in the space of cancer immunotherapy and immuno-oncology!

info@myllia.com www.myllia.com